

Product Profile 2022

Pressure Sensors Industrial and Medical Applications

www.tdk-electronics.tdk.com

Pressure Sensors for Industrial and Medical Applications

The high precision of piezoresistive pressure sensors and their possible customization to specific requirements allow their versatile use in a wide range of applications.

Pressure sensors supply measured data for industrial equipment and systems in order to control and diagnose hydraulically or pneumatically operated machines, for instance. This makes them key components in measurement and control technology. Pressure sensors are also used in medical applications such as respiratory, anesthesia equipment, blood pressure monitoring and cleaning technology.

TDK offers various designs of piezoresistive pressure measurement devices from bare pressure sensor dies via packaged pressure transducers up to customer-specific pressure sensor systems. Every design is based on MEMS sensor dies developed and manufactured in our cleanrooms. Bonded and integrated into the standard package, the pressure transducer is processed directly on the circuit board. The pressure transmitters are extended by a signal evaluation module and supplied with or without housing in ready to mount form.

The portfolio of pressure sensors has been developed with a strong focus on increased sensitivity and high performance with long-term stability. In addition, particular attention is paid to specific features for media resistance and ease of processing.

General Technical Information

Typical applications

Industrial	Medical
 Hydraulic and pneumatic systems Measurement and control technology Environmental and climate protection Gas analyzers and smart meters Pumps and compressors Industry 4.0 Heating, ventilation and air conditioning systems in buildings 	 Respiration technology Anesthesia equipment Blood pressure monitoring Cleaning equipment Pressure masks to treat sleep apnea

Pressure units

Conversion ta	Conversion table for pressure units										
bar	psi	kPa	cm H₂O	inch H ₂ O	mm Hg	lbf/ft ²					
0.016	0.232	1.6	16.32	6.43	12.0	33.416					
0.025	0.363	2.5	25.49	10.04	18.8	52.213					
0.040	0.58	4.0	40.79	16.06	30.0	83.54					
0.060	0.87	6.0	61.18	24.09	45.0	125.31					
0.100	1.45	10.0	101.97	40.15	75.0	208.85					
0.160	2.32	16.0	163.2	64.25	120.0	334.16					
0.250	3.63	25.0	254.9	100.35	188.0	522.125					
0.400	5.8	40.0	407.9	160.59	300.0	835.4					
0.600	8.7	60.0	611.8	240.87	450.0	1253.1					
1.000	14.5	100.0	1019.7	401.46	750.0	2088.5					
1.600	23.2	160.0	1632.0	642.52	1200.0	3341.6					
2.500	36.3	250.0	2549.0	1003.54	1875.0	5221.25					
4.000	58.0	400.0	4079.0	1605.91	3000.0	8354.0					
6.000	87.0	600.0	6118.0	2408.66	4500.0	12531.0					
10.00	145.0	1000.0	10197.0	4014.57	7501.0	20885.0					
16.00	232.0	1600.0	16316.0	6423.62	12001.0	33416.0					
25.00	363.0	2500.0	25494.0	10037.01	18752.0	52212.5					
40.00	580.0	4000.0	40790.0	16059.06	30002.0	83540.0					
60.00	870.0	6000.0	61184.0	24088.19	45003.0	125310.0					
100.00	1450.0	10000.0	101974.0	40147.24	75006.0	208850.0					

General Technical Information

Measurement principle

Measurement of pressure with silicon sensor dies is based on the piezo-resistive effect. This is utilized in a silicon diaphragm in which mechanical stress leads to a change of resistivity. The mechanical stress results from a pressure difference across the diaphragm.

A Wheatstone bridge network of implanted resistors in the diaphragm is used to transform the change of resistivity into an electrical signal that is proportional to the applied pressure difference.

Depending on the application, the sensor can be used as a bare die or be bonded to glass for mechanical restraint or to provide a reference vacuum.

Absolute pressure

Absolute pressure sensor dies need a vacuum as a reference point for the pressure to be measured. This reference vacuum is created by bonding the sensor to a solid glass base.

Front side processing

The reference vacuum is created by bonding the glass under vacuum to the silicon. The medium to be measured comes into contact with the active electronic components on the front side of the chip (top side of the chip). Only dry and non-aggressive media may be measured.

Back side processing

To measure the pressure of wet and/ or harsh media, direct contact with the front side needs to be avoided. This is done by creating a backside entry for the media and a reference vacuum on the front side.

Differential pressure

A pressure difference caused by a higher front side pressure leads to a positive change of the output signal. A higher backside pressure leads to a negative change of the output signal. A differential pressure sensor can be used for flow measurement by measuring the pressure drop across a restrictor such as a filter or an orifice.

Gauge pressure

A gauge pressure sensor is a special case of a differential pressure sensor where the measurement is related to ambient air pressure, which is exposed from either the front or the backside.

General Technical Information

Description of terms

Characteristic curve	The key parameters of the characteristic curve are described below: $V_{r} = f(p)$ $V_{r} = Characteristic curve with nonlinearity L (exaggerated) + Characteristic curve + Characteristic + Characteri+ + Characteri+ + Cha$							
Offset voltage	The output voltage V_{out} at zero pressure, known as the offset voltage, typically varies between ±25 mV ¹⁾ due to the spread of the technological parameters.							
Sensitivity	The sensitivity is the quotient of the changes of the output voltage and the applied pressure. Thinner diaphragms and larger surfaces increase the sensitivity and decrease he loadbearing capacity of the diaphragm. Every design is therefore a compromise petween high sensitivity and a sufficient pressure overload factor. Depending on the pressure range, the sensitivity extends between 2 and 500 mV/bar ¹ .							
Nonlinearity	The nonlinearity describes the deflection of the characteristic curve or the deviation from an ideal straight line. Depending on the pressure range, the nonlinearity typically varies from ± 0.1 to $\pm 1.0\%$ FS ² .							
Hysteresis	For an output signal indicating the same pressure, the hysteresis represents the greatest difference between measurements made in the direction of increasing and (subsequently) decreasing pressure. This error cannot be determined or compensated. However, this effect is very small and can be neglected in most applications.							
Temperature effects	The offset, sensitivity and bridge resistance are functions of the temperature.							
Offset V₀	The temperature coefficient of the offset voltage typically varies between $\pm 10 \ \mu V/V/K$ depending on the technological parameters.							
Sensitivity S	The temperature coefficient of the sensitivity is much more significant. Depending on the technological parameters, a typical value of α_s ranges between –2.5 and –1.9 \cdot 10 ⁻³ /K. The sensitivity thus decreases with temperature rise. A typical value of β_s is 5 \cdot 10 ⁻⁶ /K ² .							
Bridge resistance $R_{\scriptscriptstyle b}$	The bridge resistance is directly proportional to the temperature (at 25 °C, a typical value ranges between 3 and 5 k Ω). Depending on the technological parameters, a typical value of α_{Rb} ranges between 2.0 and 2.5 \cdot 10 ³ /K. A typical value of β_{Rb} is 6 \cdot 10 ⁻⁶ /K ² .							
¹⁾ At $V_{cc} = 5 V$ voltage source								

¹⁾ At V_{CC} = 5 V voltage source ²⁾ FS = V_r - V_o (full scale)

Note: For further details, please refer to pages 22 and 23.

Overview

Pressure sensor transducers and transmitters									
Туре	Description		Characteristics	Page					
Pressure sense	or transducers								
AK2	 AK2 gauge pressure transducers a pressure sensor dies from our owr The robust stainless steel/plastic or decoupling 	are based on piezoresistive silicon n cleanroom production facility asing features excellent mechanical	 Piezoresistive MEMS technology Wheatstone bridge with mV output ratiometric to supply voltage RoHS-compatible, halogen-free Dual-in-line package for PCB mounting 	9					
11	Rated pressure range	Pressure measurement	• Pressure port 4.8 mm tube fitting						
	0.025 … 25.00 bar	Gauge	 Pressure port 4.5 thread 						
AT2	 AT2 absolute pressure transducer pressure sensor dies from our owr The stainless steel casing features 	s are based on piezoresistive silicon n cleanroom production facility s excellent mechanical decoupling	 Piezoresistive MEMS technology Wheatstone bridge with mV output ratiometric to supply voltage RoHS-compatible, halogen-free 	10					
	Rated pressure range	Pressure measurement	 TO39 package for PCB mounting 						
- 11	1.60 … 25.00 bar	Absolute							
Pressure sense	or transmitters								
CAU-T	 CAU pressure transmitters with an represent temperature compensation pressure sensors The electronics of the CAU series temperature errors of the piezo-rest temperature errors of the piezo-rest errors and supplies a highly accurately high immunity against electromage Rated pressure range 1.00 25.00 bar 	d without stainless steel casing ed and calibrated precision compensates non-linearity and sistive measurement circuit tes non-linearity and temperature ate calibrated output signal with a netic influences (EMI) Pressure measurement Absolute	 Piezoresistive MEMS technology RoHS-compatible, halogen-free Options Without casing with pressure port M5 thread Compact stainless steel case (protection IP65) with G1/8" thread includes a shielded 4-pole cable with female M12 locking plug Output signal available as voltage (0.5 4.5 V) or as 2-wire current 	11					
	0.10 25.00 bar 0.10 1.00 bar	Gauge Gauge, symmetrical	(420 mA)						
AC-T	 The AC-T pressure transmitters of absolute and gauge, excellent acc They are completely calibrated and suitable for integration in control bl The T-series electronic compensation errors and supplies a highly accuration high immunity against electromage 	 Piezoresistive MEMS technology Voltage output 0.5 4.5 V RoHS-compatible, halogen-free Dual-in-line package for PCB mounting 	15						
Ľ.	Rated pressure range	Pressure measurement	Options						
	0.10 25.00 bar 0.10 1.00 bar	Gauge Gauge, symmetrical	 Pressure port 4.8 mm tube fitting Pressure port M5 thread 						
ASB	 The ASB 1200 VR is a miniaturize stainless steel pressure port The voltage output is calibrated an 	d SMD hybrid package with a	 Piezoresistive MEMS technology Voltage output ratiometric to supply voltage RoHS-compatible, halogen-free 	16					
X	Rated pressure range	Pressure measurement	 SMD ceramic package for PCB mounting 						
	0.20 1.20 bar								

Overview

Pressure sen	sor transducers and transm	itters									
Туре	Description		Characteristics	Page							
Pressure senso	sure sensor transmitters										
MiniCell™	 MiniCell[™] series are miniaturized pressure transmitters with high me ports due to high alloyed steel diag Available with or without stainless compensates non-linearity and ten The integrated signal conditioner p with a high immunity against electrovervoltage and reverse voltage p The sensor achieves a very high a and pressure range Can be also used as gauge pressure 	 Piezoresistive MEMS technology Voltage output 0.5 4.5 V, ratiometric to supply voltage RoHS-compatible, halogen-free Options Robust stainless steel case (protection IP67) with G 1/8" pressure ports and M12 electrical plug and the kit includes pressure connectors for 6x4 mm tube 	17								
	Rated pressure range	Pressure measurement									
	0 0.5 bar 0 1.0 bar 0 2.5 bar 0 5.0 bar 0 10.0 bar	Differential or gauge									
AVD	 The AVD series are compact press and easy screw-on or PCB mounti High accuracy at low pressure ran 	sure transmitters with flat design ng ges	 Digital output SPI or I²C interface Second electrical connection for daisy chain 	18							
Per	 Large, compensated temperature Integrated temperature measurem 	range ent	RoHS-compatible, halogen-free Ontions								
			 Flat design for direct PCB mounting 								
	Rated pressure range	Pressure measurement	• AVD series with hose connections for								
	0 … 0.016 bar 0 … 0.100 bar 0 … 7.00 bar	Differential	 Other interfaces on request 								
AFA	 AFA absolute pressure transmitter non-freezing media like fuel, dilute The integrated signal conditioner of temperature errors and supplies a signal with a high immunity agains 	s have high resistance against d acids, contaminated air compensates non-linearity and precise calibrated, amplified output t electromagnetic influences (EMI)	 Piezoresistive MEMS technology Voltage output 0.5 4.5 V, ratiometric to supply voltage RoHS-compatible, halogen-free 	19							
	 High measuring accuracy and sho and reverse voltage protection 	rt response time with overvoltage	Options Plastic or steel housing Sensor kit includes wire adapter 								
		1	with 1 m cables with precut lead ends for versatile integration								
0	Rated pressure range	Pressure measurement									
	1.00 … 11.00 bar	Absolute									
ALA	 ALA absolute pressure transmitter media like diluted acids, contamina 	s have high resistance against ated air, exhaust gases	Piezoresistive MEMS technology	20							
	 The integrated signal conditioner of temperature errors and supplies a signal with a high immunity agains 	compensates non-linearity and precise calibrated, amplified output t electromagnetic influences (EMI)	 voltage output 0.54.5 v, rationethe to supply voltage RoHS-compatible, halogen-free 								
	 High measuring accuracy and sho and reverse voltage protection 	rt response time with overvoltage	Options Sensor kit includes wire adapter 								
	Rated pressure range	Pressure measurement	ends for versatile integration								
	0.50 … 1.50 bar	Absolute									

Overview

Pressure sensor transducers and transmitters											
Туре	Description		Characteristics	Page							
Pressure senso	r transmitters										
P/T-Sensor	 P/T-Sensor is a combined high presistance against aggressive stainless steel pressure port Available with analog output voltage The integrated signal conditioner p with a high immunity against electr overvoltage and reverse voltage pressure range Measures medium temperature in Rated pressure range 0 170.0 bar 	essure and temperature sensor with e media and hydrogen due to ge provides a calibrated output signal romagnetic influences (EMI) and rotection ccuracy over the entire temperature the range -40 165 °C Pressure measurement Absolute	 Thin-film technology 0.5 4.5 V analog output voltage with 5 V supply voltage RoHS-compatible, halogen-free Weight 28 g Options Robust stainless steel case (1.4301 and 1.4548.4) with M10x1 pressure port and automotive electric plug (TE C-114-18679-3 Code B) Material with contact to the media: Stainless Steel AISI 630 (DIN 1.4542) 	21							

Pressure Transducers

Technical data												
Туре			AK2, K	D types				AK2, KC	types			
Pressure measurement							Gauge					
Measured media					١	Von-aggre	ssive fluids	s and gases	6			
Output signal							mV					
Terminal assignment				S	Supply volt Supply vol	age V _{CC+} : tage V _{CC-} :	Pin 1, Out _l Pin 3, Out	put voltage put voltage	V _{A+} : Pin 2 V _{A-} : Pin 4	,		
Dimensional drawings in mm			KD type, tube fitting					KC type, thread connection			5 6 0 7 7 8 ¥	
Maximum ratings												
Storage temperature T_{st}		°C	-40 +	125				-40 +12	25			
Operating temperature T _a		°C	-30 +	·85				-30 +85) +85			
Supply voltage (max.) V_{CC}		V	10					10				
Temperature characteristics	Temperature characteristics V _{DD} = 5 V											
Temperature coefficients α_{RS} bridge resistance (typ.) β_{RS}	of the	10 ⁻³ /K 10⁻ ⁶ /K²	2.4 6					2.4 6				
Temperature coefficients α_S sensitivity (typ.) β_S	of the	10 ⁻³ /K 10 ⁻⁶ /K²	-2.2 5					-2.2 5				
Characteristics T _a = 25 °C, V _D	_{op} = 5 V											
Bridge resistance (typ.) Rs		kΩ	5.0	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	
Offset voltage (min./max.) V _{AO}		mV	-25	+25								
Nonlinearity (typ.) L		%FS	±1	±0.5	±0.5	±0.5	±0.25	±0.25	±0.25	±0.25	±0.25	
Sensitivity (typ.) S		mV/bar	1000	500	400	300	120	48	20	12	4.8	
Over pressure (min.) p_{ov}		bar	0.250	0.500	0.600	1.000	3.000	5.000	9.000	24.00	37.50	
Rated pressure p _r		bar	0.025	0.100	0.250	0.400	1.000	2.500	6.000	10.00	25.00	
Ordering code for KD types ¹⁾			B58611K1100A001	B58611K1100A003	B58611K1100A004	B58611K1100A005	B58611K1100A006	B58611K1100A007	B58611K1100A008	B58611K1100A009		
Ordering code for KC types ¹⁾	t.		B58611K1500A007	B58611K1500A009	B58611K1500A010	B58611K1500A011	B58611K1500A012	B58611K1500A013	B58611K1500A014	B58611K1500A015	B58611K1500A016	

Pressure Transducers

Technical data							
Туре		AT2					
Pressure measurement		Absolute					
Measured media		Non-aggressive gase	S				
Output signal		mV					
Terminal assignment		Supply voltage V _{CC+} : Pin 2, Output voltage V _{A+} : Pin 5, Supply voltage V _{CC-} : Pin 4, Output voltage V _{A-} : Pin 3					
Dimensional drawings in mm		Ø12.6 Ø11.6 M5 Pressure port TO39 Ø0.45 Ø9.2 TDS0055-0-E					
Maximum ratings							
Storage temperature T_{st}	°C	-40 +125					
Operating temperature T _a	°C	-30 +85					
Supply voltage (max.) V_{CC}	V	10					
DC breakdown voltage (min.) $V_{\mbox{\scriptsize is}}$	V	500					
Temperature characteristics V _{DD} = 5 V	1						
Temperature coefficients α_{RS} of the bridge resistance (typ.) β_{RS}	10 ⁻³ /K 10⁻ ⁶ /K²	2.3 5					
Temperature coefficients α_{s} of the sensitivity (typ.) β_{s}	10 ⁻³ /K 10 ⁻⁶ /K ²	-2.2 5					
Characteristics $T_a = 25 \text{ °C}$, $V_{DD} = 5 \text{ V}$							
Bridge resistance (typ.) R _s	kΩ	3.3					
Offset voltage (min./max.) V _{AO}	mV	-30 +30					
Nonlinearity (typ.) L	%FS	±0.2					
Sensitivity (typ.) S	mV/bar	70	31	12	5		
Over pressure (min.) p₀v	bar	4.000	6.000	15	37.50		
Rated pressure p _r	bar	1.600	4.000	10.00	25.00		
Ordering code ¹⁾		B58610T4600A001	B58610T4600A003	B58610T4600A005	B58610T4600A007		

Туре		CAU-T w	ithout stai	nless stee	teel housing, voltage output							
Pressure measurement			Absolute			G	auge			Gauge, s	ymmetrical	
Measured media		Non-aggr	essive gase	es	Non-a	aggressi	ve fluid	s and g	ases			
Output signal			0.5	V 4.5 V	v, calibrated and temperature compensated							
Terminal assignment		Supply voltage: V _{cc} , Ground: GND, Output signal (reference to GND): V _A										
Dimensional drawings in mm		17 ⁴¹ 64-1		Soldering pins)	M5 AK \$18 ⁴ 0 100000	- 					
Maximum ratings												
Storage temperature T _{st}	°C	-40 +1	05		-40	+105				-40 +105		
Operating temperature T _a	°C	-25 +8	5		-25 +85					-25 +85		
Compensated temperature T_c	°C	0 +70	0+	70				0 +70				
Supply voltage (min./max.) V_{CC}	V	4.75 5.	4.75	. 5.5				4.75 5.5				
Supply current (max.) I_{CC} ($I_A=0$)	mA	7.0			7.0					7.0		
Signal output current (max.) I_A	mA	2.0			2.0					2.0		
DC breakdown voltage (min.) V_{is}	V	500			500					500		
Output signal at sensor failure	V	0.01		0.01					0.01			
Temperature characteristics $V_{cc} = \frac{1}{2}$	15 V with	in T _c										
Temperature coefficient of	%FS/K	±0.015			±0.01	5				±0.015		
Temperature coefficient of	%FS/K	±0.015			±0.01	5				±0.015		
Characteristics $T_a = 25 \text{ °C}$, $V_{CC} = 15$	V, I _A < 0.	1 mA										
Response time (typ.) t ₁₀₋₉₀	ms	1			1					1		
Offset V _{AO}	V	0.5 ±0.01	5		0.5 ±0	0.015				2.5 ±0.015		
Nonlinearity (typ.) L	%FS	±0.1			±0.1					±0.25		
Output span V _{FS}	V	4.0 ±0.01	5		4.0 ±0	0.015				4.0 ±0.015		
Over pressure (min.) p _{ov}	bar	1.5 x p _r			1.5 x	p _r				1.5 x p _r		
Rated pressure p _r	bar	1.000	10.00	25.00	0.100	0.400	1.000	6.000	10.00	0.100	0.250	
Ordering code ¹⁾		358620T0510A001	358620T0510A004	358620T0510A005	358621K0510A006	358621K0510A008	358621K0510A009	358621K0510A011	358621K0510A012	358623K0510A014	358623K0510A015	
						1						

Туре		CAU-T with stainless steel housing, voltage output									
Pressure measurement		Absolu	ute		(Gauge			Gaug	ge, symi	metrical
Measured media		Non-aggres	sive gases	Non-ag	gressive	e fluids	and gase	s			
Output signal			0.5 V	4.5 V, ca	librated	and ter	nperature	e comper	nsated		
Terminal assignment		S	Supply voltage V_{CC} : Pin 1 (brown), Output voltage V_A : Pin 2 (white), Ground GND: Pin 3 (blue), Ground (Kelvin guidence) GND: Pin 4 (block)								
Dimensional drawings in mm			O-Ring s is include								3 2 2
		A shielded 4 plug is includ	A shielded 4-pole cable (2 m) with a modified (pressure equalization of the state o						9.5 –	Vent h	/ IDS0020-0-E
Maximum ratings		1		ľ					F		
Storage temperature T_{st}	°C	-30 +85		-30 +	-85				-30	+85	
Operating temperature T _a	°C	-25 +85		-25 +	·85				-25 +85		
Compensated temperature T_c	°C	0 +70	0 +70 0 +70					0 +70			
Supply voltage (min./max.) V_{CC}	V	7.5 30	7.5 30 7.5 30					7.5 30			
Supply current (max.) I _{CC} (I _A =0)	mA	7.0		7.0					7.0		
Signal output current (max.) I_A	mA	2.0		2.0					2.0		
DC breakdown voltage (min.) V_{is}	V	500		500					500		
Output signal at sensor failure (max.) V _{ERR}	V	0.01		0.01					0.01		
Temperature characteristics V _{cc} = 15	5 V withir	n T _c									
Temperature coefficient of offset (typ.) TCV _{AO}	%FS/K	±0.015		±0.015					±0.015		
Temperature coefficient of span (typ.) TCV _{FS}	%FS/K	±0.015		±0.015					±0.01	5	
Characteristics $T_a = 25 \text{ °C}$, $V_{cc} = 15 \text{ V}$	′, I _A < 0.1	mA									
Response time (typ.) t_{10-90}	ms	1		1					1		
Offset V _{AO}	V	0.5 ±0.015		0.5 ±0.0	015				2.5 ±0	.015	
Nonlinearity (typ.) L	%FS	±0.1		±0.1					±0.25		
Output span V _{FS}	V	4.0 ±0.015		4.0 ±0.0	015				4.0 ±0	0.015	
Over pressure (min.) p _{ov}	bar	1.5 x p _r		1.5 x p _r					1.5 x j	p _r	
Rated pressure p _r	bar	2.500	25.00	0.100	1.000	2.500	10.00	25.00	0.100	0.400	1.000
Ordering code ¹⁾		358620H5810A019	358621H5810A023	358621H5810A026	358621H5810A027	358621H5810A029	358621H5810A030	358623H5810A031	358623H5810A033	358623H5810A034	
outor prossure ranges on request.					-	ш	ш			Ш	ш

Technical data CAU-T without stainless steel housing, current output Туре Pressure measurement Absolute Gauge Measured media Non-aggressive gases Non-aggressive fluids and gases Output signal 4 mA ... 20 mA, calibrated and temperature compensated Terminal assignment Positive supply voltage: I+, Negative supply voltage: I-Dimensional drawings in mm 841 Ĭ AT -1 1 1 1 1 ۲**۹** ø18⁺¹ Maximum ratings -40 ... +105 -40 ... +105 Storage temperature T_{st} °C -25 ... +85 -25 ... +85 Operating temperature T_a °C Compensated temperature T_c ٥С 0 ... +70 0 ... +70 Supply voltage (min./max.) V_{CC} V 10 ... 30 10 ... 30 Current limit I_{CCmax} 23 23 mΑ V 500 500 DC breakdown voltage (min.) Vis 1000 1000 Load resistance (max.) R_L Ω Output signal at sensor failure 3 3 mΑ (max.) IERR Temperature characteristics V_{cc} = 15 V within T_c Temperature coefficient %FS/K ±0.015 ±0.015 of offset (typ.) TCIcco Temperature coefficient of %FS/K ±0.015 ±0.015 span (typ.) TCI_{FS} Characteristics $T_a = 25 \text{ °C}$, $V_{cc} = 15 \text{ V}$, $I_A < 0.1 \text{ mA}$ Response time (typ.) t₁₀₋₉₀ ms 1 1 4 ±0.08 Offset Icco mΑ 4 ±0.08 Nonlinearity (typ.) L %FS ±0.1 ±0.1 16 ±0.08 16 ±0.08 Output span I_{FS} mΑ Over pressure (min.) pov bar 1.5 x p_r 1.5 x p_r 25.00 2.500 6.000 10.00 Rated pressure pr bar Ordering code¹⁾ B58621K0520A005 B58621K0520A006 B58620T0520A005 B58621K0520A007 1) Other pressure ranges on request.

Please read Cautions and Warnings on page 24 and Important notes on page 25.

Technical data Туре CAU-T with stainless steel housing, current output Pressure measurement Gauge, symmetrical Absolute Gauge Measured media Non-aggressive gases Non-aggressive fluids and gases Output signal 4 mA ... 20 mA, calibrated and temperature compensated Terminal assignment Positive supply voltage I+ (V_{cc}): Pin 1 (brown), Negative supply voltage I-: Pin 3 (blue) O-Ring seal is included Dimensional drawings in mm G1/8" S0228 M12 X 2 2 2 2 lent hole 2 mm 50 6.5 9.5 I + (V_{CC}) P/I Vs GND A shielded 4-pole cable (2 m) with a modified (pressure equalization) female \oslash M12 locking plug is included in delivery TDS0021-0 Maximum ratings -30 ... +85 -30 ... +85 -30 ... +85 °С Storage temperature T_{st} -25 ... +85 -25 ... +85 -25 ... +85 Operating temperature T_a °С °C 0 ... +70 0 ... +70 0 ... +70 Compensated temperature T_c 10 ... 30 10 ... 30 Supply voltage (min./max.) V_{CC} 10 ... 30 ٧ 23 23 Current limit I_{CCmax} mΑ 23 500 500 500 DC breakdown voltage (min.) Vis V Load resistance (max.) R_L 1000 1000 1000 0 Output signal at sensor failure 3 3 3 mΑ (max.) I_{ERR} Temperature characteristics V_{cc} = 15V within T_c Temperature coefficient of %FS/K ±0.015 ±0.015 ±0.015 offset (typ.) TCIcco Temperature coefficient of %FS/K ±0.015 ±0.015 ±0.015 span (typ.) TCIFS Characteristics $T_a = 25 \text{ °C}$, $V_{cc} = 15 \text{ V}$, $R_L = 100 \Omega$ Response time (typ.) t₁₀₋₉₀ ms 1 1 1 Offset Icco mΑ 4 ±0.08 4 ±0.08 12 ±0.08 %FS ±0.1 ±0.25 Nonlinearity (typ.) L ±0.1 Output span I_{FS} mΑ 16 ±0.08 16 ±0.08 16 ±0.08 Over pressure (min.) pov bar 1.5 x p_r 1.5 x p_r 1.5 x p_r 6.000 25.00 0.100 1.000 10.00 0.250 0.800 Rated pressure pr bar Ordering code¹⁾ B58620H5820A039 B58621H5820A040 B58621H5820A043 358621H5820A046 B58623H5820A049 B58623U2700B311 B58620H5820A037 ¹⁾ Other pressure ranges on request.

Туре		AC-T	serie	s, KD t	ypes, v	oltage ou	tput	AC-T series, KC types, voltage output							
Pressure measurement		Gaug	je			Gauge, sy	mmetr.	Gaug	je				Gauge	, sym.	
Measured media		Non-	aggres	sive flu	ids and	gases		Non-	aggres	ssive fl	uids ar	nd gase	es		
Output signal				0	.5 V	4.5 V, cali	brated ar	nd temp	peratur	re com	pensat	ted			
Terminal assignment					Sup C	oply voltag Output sign	e V _{cc} : Piı al (refere	n 1, Gro nce to	ound G GND)	GND: P V _A : Pir	'in 2, n 3				
Dimensional drawings in mm		F	or PCB n ø4.8	nounting	Te	rminal assignr	nent	For PCB mounting Terminal a				assignmei	nt		
		B B B B B B B B B B B B B B			0.8 (s32 mil) 1	90.8 90.8			7.82 (300 mll)	(#32 mil)	3 + - - - - - - - - - - - - -				
Maximum ratings															
Storage temperature T_{st}	°C	-40	. +105			-40 +1	05	-40	. +105				-40 +105		
Operating temperature T _a	°C	-25	. +85			-25 +8	5	-25	. +85				-25 +85		
Compensated temperature $T_{\mbox{\tiny c}}$	°C	0+	-70			0 +70	0 +70				0 +70				
Supply voltage (min./max.) V_{CC}	V	4.75 .	5.5			4.75 5	4.75 5.5				4.75 5.5				
Supply current (max.) I_{CC} (I _A =0)	mA	7.0				7.0	7.0					7.0			
Signal output current (max.) I_A	mA	2.0				2.0 2.0				2.0					
DC breakdown voltage (min.) V_{is}	V	500				500 500				500					
Output signal at sensor failure (max.) V_{ERR}	V	0.01				0.01 0.01				0.01					
Temperature characteristics V _{cc} =	= 5 V wit	hin T _c													
Temperature coefficient of offset (typ.) TCV _{AO}	%FS/K	±0.01	15			±0.015		±0.01	15				±0.01	5	
Temperature coefficient of span (typ.) TCV _{FS}	%FS/K	±0.01	15			±0.015		±0.01	15				±0.01	5	
Characteristics $T_a = 25 \text{ °C}$, $V_{cc} = 5$	5 V, I _A < ().1 mA													
Response time (typ.) t_{10-90}	ms	1				1		1					1		
Offset V _{AO}	V	0.5 ±	0.015			2.5 ±0.07	15	0.5 ±	0.015				2.5 ±0	0.015	
Nonlinearity (typ.) L	%FS	±0.1				±0.25		±0.1					±0.25		
Output span V _{FS}	V	4.0 ±	0.015			4.0 ±0.07	15	4.0 ±	0.015				4.0 ±0	0.015	
Over pressure (min.) p_{ov}	bar	1.5 x	p _r			1.5 x p _r		1.5 x	pr				1.5 x	p _r	
Rated pressure p _r	bar	0.100	0.250	0.400	1.000	0.100	0.400	0.100	1.000	2.500	6.000	25.00	0.100	1.000	
Ordering code ¹⁾		358621K1110A054	358621K1110A055	358621K1110A056	358621K1110A057	358623K1110A058	358623K1110A060	358621K1510A062	358621K1510A065	358621K1510A066	358621K1510A067	358621K1510A069	358623K1510A070	358623K1510A073	

Туре		ASB 1200 VR SMD						
Pressure measurement		Absolute						
Measured media		Non-aggressive gases						
Output signal		10% 90% $V_{\text{CC}},$ calibrated and temperature compensated						
Terminal assignment		Supply voltage V _{CC} : Pin 4, Ground GND: Pin 2, Output signal V _A : Pin 3						
Dimensional drawings in mm		2 (GND) 1 (n/c) 4 (V _{supply}) 5 (V _{out}) 4 (V _{supply}) 5 (V _{out}) 5 (V _o						
Maximum ratings								
Storage temperature T_{st}	°C	-40 +125						
Operating temperature T _a	°C	-25 +85						
Compensated temperature T_c	°C	0 +70						
Supply voltage (min./max.) V_{CC}	V	2.7 5.5						
Supply current (max.) I_{CC} ($I_A=0$)	mA	2.5						
Signal output current (max.) I _A	mA	2.0						
Startup time (max.) t _{STA}	ms	10						
Characteristics V _{cc} = 5 V within T_c								
Basic accuracy (typ.)	%FS	±2						
Characteristics $T_a = 25 \text{ °C}$, $V_{cc} = 5 \text{ V}$, I_A	< 0.1 n	nA						
Response time (typ.) t ₁₀₋₉₀	ms	2						
Offset (typ.) V _{AO}	V	10% V _{cc} at 200 mbar						
Nonlinearity (typ.) L	%FS	±0.1						
Output span V _{FS}	V	80% V _{CC}						
Resolution r _{out}	bit	12						
Over pressure (min.) p _{ov}	bar	2 x p _r						
Burst pressure (min.) p _{burst}	bar	3 x p _r						
Rated pressure p _r	bar	0.2 1.2						
Ordering code ¹⁾		B58620S3300B360						

Technical data MiniCell[™] without housing MiniCell[™] with stainless steel housing Туре Pressure measurement Differential Differential Measured media High resistance against media like diluted acids, contaminated air, exhaust gases Output signal 0.5 V ... 4.5 V, 10% ... 90% V_{CC}, calibrated and temperature compensated Terminal assignment Supply voltage V_{CC}: Pin 1, Ground GND: Pin 2, Output signal V_A: Pin 3 Dimensional drawings in mm e12±0.15 |C| 4^{g10±0.03} 0 60.8 A B ⊖ s0.8 A B 0.15 0 ä. ക 81 Maximum ratings °C -40 ... +140 -40 ... +140 Storage temperature T_{st} -20 ... +140 Operating temperature T_a °C -40 ... +140 -20 ... +140 °С -40 ... +140 Compensated temperature T_c 4.5 ... 5.5 Supply voltage (min./max.) V_{CC} V 4.5 ... 5.5 7.0 Supply current (max.) I_{CC} (I_A=0) 7.0 mA Signal output current (max.) IA 2.0 2.0 mΑ Load resistor (min.) RL kΩ 2.7 2.7 Overvoltage (min.) Vov V 33 33 V 0.25 0.25 Output signal at sensor failure (max.) VERR Characteristics T_a = 25 °C, V_{CC} = 5 V, I_A < 0.1 mA 10 10 Response time (typ.) t₁₀₋₉₀ ms Nonlinearity (typ.) L %FS ±0.25 ±0.25 %FS ±2.0 ±1.5 ±1.0 ±1.0 ±1.0 ±2.0 ±1.5 ±1.0 ±1.0 ±1.0 Total error E_T ($T_a = 0...85 \ ^{\circ}C$) %FS ±1.5 ±1.5 ±2.5 Total error E_T (within T_c) ±2.5 ±2.0 ±1.5 ±2.0 ±1.5 ±1.5 ±1.5 2.000 2.500 5.000 10.00 20.00 2.000 2.500 5.000 10.00 20.00 Over pressure (max.) pov bar Rated pressure pr 0.500 1.000 2.500 5.000 10.00 0.500 1.000 2.500 5.000 10.00 bar Ordering code¹⁾ B58622M3273B359 B58622M3214B506 B58622M3274B508 B58622M3215B509 B58622M3273B745 B58622M3214B746 358622M3274B748 B58622M3215B749 B58622M3244B747 B58622M3244B507 ¹⁾ Other pressure ranges on request.

Туре		AVD, Flat de	esign		AVD, Flat des	sign with tube	interface
Pressure measurement		Differential			Differential		
Measured media		Air, non-aggressive gases					
Output signal		SPI digital output			l ² C digital output		
Terminal assignment		Pin 1: Ground Pin 3: Master I Slave Select S	GND, Pin 2: Seria nput Slave Outpu S, Pin 5: Supply v	al Clock SCLK, t MISO, Pin 4: voltage V _{CC}	Pin 1: Ground G SCL, Pin 3: Ser function INT, Pi	GND, Pin 2: Serial ial Data Line SDA n 5: Supply voltag	Clock Line A, Pin 4: Internal Je V _{CC}
Dimensional drawings in mm		3240.1 (Refere	Port B Reventing) Port B Reventing) Port A (Rated pr (Rated	essure +) SM05B-SRSS-GU-TB (Secondary connection for datay chain) Hidral cover Hidral cover (Primary connection) Terminal assignment X1, X2 1 GND 2 SCL/SCLK 4 INT/SS 5 VCC (+5 V) T09019-4-6E			12±02
Maximum ratings							
Storage temperature T _{st}	°C	-30 +70			-30 +70		
Operating temperature T _a	°C	-20 +70			-20 +70		
Compensated temperature T_c	°C	-20 +70			-20 +70		
Supply voltage (min./max.) V_{CC}	V	2.7 5.5			2.7 5.5		
Supply current (max.) I _{CC} (I _A =0)	mA	10			10		
Characteristics T _a = 25 °C, V _{CC} = 5 V							
Digital output range D _A (10 90% of 14 bit)	digit	1637 1474	5		1637 14745	5	
Offset (typ.) D _{AO}	digit	1637			1637		
Signal span (typ.) D _{FS}	digit	13107			13107		
Temperature output range (-50 +150 °C)	digit	0 2047			0 2047		
Offset error (typ.) E _{AO}	%FS	±1.0	±0.2	±0.1	±1.0	±0.2	±0.1
Nonlinearity (typ.) L	%FS	±0.15	±0.15	±0.15	±0.15	±0.15	±0.15
Total error (typ.) $E_T @ T_c$	%FS	±1.5	±0.45	±0.35	±1.5	±0.45	±0.35
Temperature signal error (typ.) E _t	К	±2.0	±2.0	±2.0	±2.0	±2.0	±2.0
Configuration, digital interface							
System clock frequency	MHz	4			4		
Update period	ms	0.5			0.5		
I ² C address		0 x 10	0 x 20	0 x 30	0 x 10	0 x 20	0 x 30
Sleep mode		inactive			inactive		
Over pressure (max.) p _{ov}	bar	0.160	1.000	14.00	0.160	1.000	14.00
Rated pressure p _r	bar	0.016	0.100	7.000	0.016	0.100	7.000
Ordering code ¹⁾		3621V4121B538	3621V2712B537	3621V2894B536	3621V4121B765	3621V2712B766	3621V2894B767
¹⁾ Other pressure ranges on request.		B56	B56	B56	B56	B56	B56

Туре		AFA with plastic housing	AFA with stainless steel housing		
Pressure measurement		Absolute	Absolute		
Measured media		High resistance to non-freezing media like fuel, diluted acids, contaminated			
Output signal		10% 90% $V_{\text{CC}},$ calibrated and temperature compensated			
Terminal assignment		Supply voltage V _{CC} : Pin 1 (r Output signa	ed), Ground GND: Pin 3 (black), I V _A : Pin 2 (blue)		
Dimensional drawings in mm		ALEOS Morteg	COFIZ -		
Maximum ratings					
Storage temperature T_{st}	°C	-40 +125	-40 +125		
Operating temperature T _a	°C	-40 +125	-20 +125		
Compensated temperature T_c	°C	-40 +125	-20 +125		
Supply voltage (min./max.) V_{CC}	V	4.5 5.5	4.5 5.5		
Supply current (max.) I_{CC} (I_A =0)	mA	7.0	7.0		
Signal output current (max.) I _A	mA	2.5	2.5		
Load resistor (min.) R _L	kΩ	2.0	2.0		
Overvoltage (min./max.) V _{ov}	V	-33 +33	-33 +33		
Characteristics $T_a = 25 \text{ °C}$, $V_{CC} = 5$	V, I _A < 0.1	mA			
Response time (typ.) t ₁₀₋₉₀	ms	1	1		
Total error E _T (T _a = 20 … 80 °C)	%FS	±2.0	±2.0		
Total error E _T (T _a = -40 20 °C, 80 125 °C) (min./ max.)	%FS	±3.0	±3.0		
Burst pressure (min.) p _{burst}	bar	30.0	30.0		
Over pressure (min.) p_{ov}	bar	15.00	15.00		
Rated pressure p _r	bar	1.0 11.0	1.0 11.0		
Ordering code ¹⁾		B58620F3800B830	B58620F3800B768		

Technical data	
Туре	ALA
Pressure measurement	Absolute
Measured media	High resistance against media like diluted acids, contaminated air, exhaust gases
Output signal	0.5 V to 4.5 V, 10% … 90% $V_{\text{CC}},$ calibrated and temperature compensated
Terminal assignment	Supply voltage V _{CC} : Pin 1 (red), Ground GND: Pin 3 (black), Output signal V _A : Pin 2 (blue)
Dimensional drawings in mm	
	O-Ring FKM
Maximum ratings	
Operating temperature T_a °C	-40 +140
Operating temperature for wire T_{wo} $\hfill ^{\circ}C$	-40 +125
Compensated temperature T_c °C	-40 +125
Supply voltage (min./max.) V _{CC} V	4.5 5.5
Supply current (max.) I_{CC} ($I_A=0$) mA	9.5
Signal output current (max.) I _A mA	2.5
Short circuit current I _{ASC} mA	-25 +25
Overvoltage (min./max.) V _{OV} V	-33 +33
Characteristics T_a = 25 °C, V_{CC} = 5 V, I_A < 0.1 mÅ	
Response time (typ.) t ₁₀₋₉₀ ms	1
Total error E_T (T_a = 10 50 °C) %FS	±1.0
Total error E _T (T _a = -40 10 °C, %FS 50 125 °C) (min./ max.)	±3.0
Burst pressure (min.) p _{burst} bar	4.5
Over pressure (min.) p _{ov} bar	3.0
Rated pressure p _r bar	0.5 1.5
Ordering code ¹⁾	B58620L3200B801

Technical data		
Туре		P/T-Sensor
Pressure measurement		Absolute
Measured media		High resistance against media like diluted acids, hydrogen, exhaust gases, HVAC refrigerants such as R744, R1234yf and others
Output signal		0.5 V to 4.5 V, 10% 90% $V_{\text{CC}},$ calibrated and temperature compensated
Dimensional drawings in mm		Sensor is only leak tight by using a sealed connector Sensor connector similar to frame spec.: TE C-114-18679-3 CODE B Pin surface finished acc. frame spec.: TE C-114-94201
		(3) DMC - (8 x 8) or (7 x 7) Identification via laser (1) (2) (2) (2) (2) (2) (2) (2) (3) (4) (7)
Maximum ratings		I DOLEDU TE
Operating temperature T _a	°C	-40 +125
Operating temperature medium Two	°C	-40 +180
Compensated temperature T _c	°C	-40+125
Supply voltage (min./max.) V _{cc}	V	5.0 36.0
Supply current (max.) I _{CC} (I _A =0)	mA	510
Signal output current (max.) I _A	mA	20
Characteristics T_a = 25 °C, V_{CC} = 5 V, I_A < 0	.1 mA	
Response time (typ.) t ₆₃	s	4.9
Total error pressure E_P (T _a = -40 125 °C)	%FS	±1
Total error temperature E_T ($T_a = -40 \dots 125 °C$)	К	±1
Burst pressure (min.) p _{burst}	bar	3 x p _r
Over pressure (min.) p_{ov}	bar	1.5 x p _r
Rated pressure p _r	bar	0.0 170.0
Rated temperature range t _r	°C	-40165°C
Ordering code		Upon request

Symbols and Terms

1) Storage temperature range T_{st}

A short term storage of the pressure sensor within the temperature range $T_{st,min}$ up to $T_{st,max}$ and without applied pressure and supply voltage will not affect the performance of the pressure sensor.

2) Operating temperature range Ta

An operation of the pressure sensor within the temperature range $T_{a,min}$ up to $T_{a,max}$ will not affect the performance of the pressure sensor.

3) Compensated temperature range T_c

While operating the pressure sensor within the temperature range $T_{c,min}$ up to $T_{c,max}$, the deviation of the output signal will not exceed the temperature specific measurement error. Out of the compensated temperature range, the deviations may increase.

4) Operating temperature range of wire Two

An operation of the connector within the temperature range $T_{wo,min}$ up to $T_{wo,max}$ will not affect the performance of the connector.

5) Supply voltage Vcc

 $V_{CC,max}$ is the maximum of permissible supply voltage, which can be applied without damages. $V_{CC,min}$ is the minimum of required supply voltage, which has to be applied for normal operation.

6) Supply current Icc

 $I_{\rm CC,}$ is the maximum of current required to run the pressure sensor. Additional to the supply current $I_{\rm CC}$ the signal output current $I_{\rm A}$ is working.

7) Signal output current IA

 $I_{A,max}$ is the maximum permissible sink current of the signal output. The signal output current is depending on the voltage of the output signal and the load resistor R_L. Exceeding (e.g. short circuit) of the signal output current I_A may cause irreparable damages.

8) Short circuit current lasc

Maximum short circuit current at following conditions: minimum output voltage to V_{CC} or maximum output voltage to Ground

9) Load resistance R_L

Depending on Vs, the maximum working resistance is RL \geq (Vs - 10 V) / 0.02 A.

10) DC voltage resistance V_{is}

The pressure sensor withstands a high voltage between the stainless steel pressure connection and the electrical connection V_{CC} , V_A and GND (all short-circuited) without damage.

11) Overvoltage Vov

Maximum voltage being applied in any polarity to all contact pins without damaging the pressure sensor.

12) Output signal at sensor failure VERR

Output voltage of the sensor, if the signal conditioner detects a serious internal functional error.

13) Ratiometric output

The output voltage V_A is ratiometric to the supply voltage (V_A ~ V_{CC}). Example: V_A ($p_{r,min}$) = 0.04 V/V with V_{CC} = 5 V, V_A ($p_{r,min}$) = 0.04 V/V * 5 V = 0.2 V

with $V_{CC} = 5 \text{ V}$, $V_A (p_{r,min}) = 0.04 \text{ V/V} * 5 \text{ V} = 0.2 \text{ V}$ with $V_{CC} = 5.1 \text{ V}$, $V_A (p_{r,min}) = 0.04 \text{ V/V} * 5.1 \text{ V} = 0.204 \text{ V}$

14) Offset V_{A0}

The offset V_{A0} is the signal output $V_A (p = 0)$ at zero pressure. The value is related to the supply voltage V_{CC} . One-sided output: $V_{A0} = 0.1 V_{CC}$ Symmetrical output: $V_{A0} = 0.5 V_{CC}$

15) Offset Icco

The offset I_{CC0} is the signal output I_{CC} (p = 0) at zero pressure.

16) Offset D_{A0}

The offset D_{A0} is the digital signal output D_A (p = 0).

17) Signal span (Full Scale)

One-sided output: $V_{FS} = FS = V_A (p_r) - V_{A0}$ Symmetrical output: $V_{FS} = FS = V_A (+p_r) - V_A (-p_r)$

18) Pressure output signal span (Full Scale)

 $D_{FS} = FS = D_A(p_{r,max}) - D_A(p_{r,min})$

19) Sensitivity S

Within the pressure range 0 up to p_r the output voltage is $V_A(p_x) = V_{AO} + S \cdot p_x$

20) Non-linearity L (including pressure hysteresis)

The non-linearity is the deviation of the real sensor characteristic $V_A = f(p)$ from the ideal straight line. It can be approximated by a polynomial of second order, with the maximum at $p_M = p_r / 2$.

The equation to calculate the non-linearity is:

$$L = \frac{V_{A}(p_{x}) - V_{A0}}{V_{A}(p_{r}) - V_{A0}} - \frac{p_{x}}{p_{r}}$$

Symbols and Terms

21) Temperature coefficients of the bridge resistance $\alpha_{RS},\,\beta_{RS}$

Bridge resistance at temperature T_x : Rs (Tx) = Rs (25 °C) • [1 + α Rs • (Tx - 25 °C) + β Rs • (Tx - 25 °C)²]

Values are valid within the operating temperature range $T_{a,min}$ up to $T_{a,max}$

Out of the operating temperature range, the deviation may increase.

22) Temperature coefficients of the sensitivity α_s , β_s Sensitivity at temperature T_x :

S (T_x) = S (25 °C) • [1 + α s • (T_x - 25 °C) + β s • (T_x - 25 °C)²]

Values are valid within the operating temperature range $T_{a,min}$ up to $T_{a,max}$

Out of the operating temperature range, the deviation may increase.

23) Temperature coefficients of offset TCV_{A0}

Offset at temperature T_x: $V_{A0} (T_x) = V_{A0} (25 \text{ °C}) + V_{FS} (25 \text{ °C}) \cdot TCV_{A0}$ Values are valid within the compensated temperature range T_{C,min} up to T_{C,max} Out of the compensated temperature range, the deviation may increase.

24) Temperature coefficients of span TCV_{FS}

Span at temperature T_x: $V_{FS}(T_x) = V_{FS}(25 \ ^{\circ}C) \cdot [1 + (T_x - 25 \ ^{\circ}C) \cdot TCV_{FS}]$ Values are valid within the compensated temperature range T_{C,min} up to T_{C,max} Out of the compensated temperature range, the deviation may increase.

25) Startup time tsTA

Time between the startup of the normal operation after power on and the first valid output signal.

26) Response time t₁₀₋₉₀

Delay between a pressure change (10 \dots 90% p_r) and the corresponding signal output change (10 \dots 90% FS) based on theoretical estimations.

27) Rated pressure pr

Within the rated pressure range 0 up to p_r (symmetrical output: $\pm p_r$) the signal output characteristic corresponds to this specification. Rated pressure for differential pressure sensors is defined as: $p_r = p_1 - p_2$.

28) Overpressure pov

1000 pressure cycles within the pressure range 0 up to p_{ov} will not affect the performance of the pressure sensor. Overpressure is defined as: $p_{ov} = p_1 - p_2$.

29) Burst pressure p_{burst}

Bust pressure p_{burst} is the maximum of permissible pressure applied without causing leakage of the sensor. Measurement performance of the sensor may be affected. Burst pressure is defined as: $p_{burst} = p_1 - p_2$.

30) Total measuring error ET

Total measuring error E_T includes offset error, span error, nonlinearity, pressure hysteresis, temperature hysteresis, and signal noise. It describes the deviation of the signal to the nominal output characteristic.

Cautions and Warnings

Storage

All pressure sensors should be stored in their original packaging. Maximum storage and time in original package is 2 years from the date of production. Transmitters should neither be placed in harmful environments such as corrosive gases nor exposed to heat or direct sunlight, which may cause deformations. Similar effects may result from extreme storage temperatures and climatic conditions. Avoid storing the sensors in an environment where condensation may form or in a location exposed to corrosive gases, which will adversely affect their performance. Sensors should be stored upright with the connector area up and the pressure port down.

Storage as delivered in original package (sealed trays/ sealed blisters):

- Sealed as delivered
- Temperature range: +5 °C to +40 °C
- Relative humidity range: <60% RH
- Shelf life under these conditions: 24 months

Operation

Media compatibility with the pressure sensors has to be checked to prevent their failure. The use of other media can cause damage and malfunction. Never use pressure sensors in atmospheres containing explosive liquids or gases.

Ensure pressure equalization to the environment, if gauge pressure sensors are used. Avoid operating the pressure sensors in an environment where condensation may form or in a location exposed to corrosive gases. These environments adversely affect their performance.

If the operating pressure is not within the rated pressure range, it may change the output characteristics. Be sure that the applicable pressure does not exceed the over pressure, as it may damage the pressure sensor.

Do not exceed the maximum rated supply voltage nor the rated storage temperature range, as it may damage the pressure sensor.

Temperature variations in both the ambient conditions and the media (liquid or gas) can affect the accuracy of the output signal from the pressure sensors. Be sure to check the operating temperature range and thermal error specification of the pressure sensors to determine their suitability for the application. Connections have to be wired in accordance with the terminal assignment specified in the data sheets. Care should be taken as reversed pin connections can damage the pressure transmitters or degrade their performance. Contact between the pressure sensor terminals and metals or other materials may cause errors in the output characteristics.

Handling/ Mounting

The sensor must be checked for correct application and the connector to be used. Mounting torque of pressure ports screwed in sensor housing has to be checked. The mounted pressure ports has to be tested to avoid leakage. Be sure that pressure ports fulfil temperature, media and pressure requirements. Prior to installing the sensor, the pressure inlet must be checked for soiling and blockage of the opening by any contaminants. Do not exceed the given mounting torque. If applicable, check length of screws for stable fixation. Release all mounting processes carefully.

Soldering

The thermal capacity of the pressure sensor is normally low, so steps should be taken to minimize the effects of external heat. High temperatures may lead to damage or changes in characteristics.

A non-corrosive type of flux resin should normally be used and complete removal of the flux is recommended.

Avoid rapid cooling due to dipping in solvent. Note that the output signal may change if pressure is applied to the terminals during soldering. Contact between the sensor terminals and metals or other materials may cause errors in the output characteristics.

This listing does not claim to be complete, but merely reflects the experience of TDK Electronics AG.

Important Notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- We also point out that in individual cases, a 2. malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- manufacturing sites serving 7 Our the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in Quality Management System. For our clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- The trade names EPCOS, CarXield, CeraCharge, 8 CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06

Important information: Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products. We expressly point out that these statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. It is incumbent on the customer to check and decide whether a product is suitable for use in a particular application. This publication is only a brief product survey which may be changed from time to time. Our products are described in detail in our data sheets. The *Important notes* (www.tdk-electronics.tdk.com/ImportantNotes) and the product specific Cautions and warnings must be observed. All relevant information is available through our sales offices.