

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type:B41896Date:December 2019

© TDK Electronics AG 2019. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

Single-ended capacitors

Up to 135 °C

Long-life grade capacitors

Applications

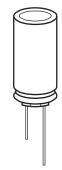
Automotive electronics

Features

- Long useful life
- High operating temperature capability up to 135 °C
- High ripple current capability
- Low ESR
- RoHS-compatible

Construction

- Radial leads
- Charge-discharge proof, polar
- Aluminum case with PET insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent


Delivery mode

Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (Protection Against Polarity Reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details.

Page 2 of 27

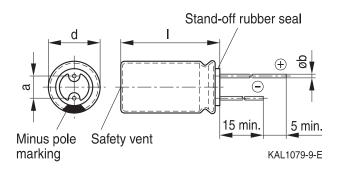
Up to 135 °C

Specifications and characteristics in brief

Rated voltage V_{R}	25 50 V DC								
Surge voltage V_s	1.15 · V _R								
Rated capacitance C _R	180 4700 μF	180 4700 μF							
Capacitance tolerance	$\pm 20\% \triangleq M$								
Dissipation factor tan δ	For capacitance hi	For capacitance higher than 1000 μ F add 0.02 for every increase of							
(20 °C, 120 Hz)	1000 μF.	1000 μF.							
	V _R (V DC)	25	35	50					
	tan δ (max.)	0.17	0.12	0.10					
Leakage current I _{leak} (20 °C, 5 min)	$I_{\text{leak}} = 0.01 \mu\text{A} \cdot \left(\frac{1}{2} \right)$	$\frac{C_R}{\mu F} \cdot \frac{V_R}{V}$	or 3 µA, v	whichever is greater					
Self-inductance ESL	Diameter (mm)	≤ 12.5	16	18					
	ESL (nH)	20	26	34					
Useful life ¹⁾			Require	ments:					
125 °C; V _R ; I _{AC,R}	> 3500 h for d = 10	0 mm	∆C/C	\leq 35% of initial value					
	> 7000 h for d \ge 12	-	tan δ	\leq 3 times initial specified limit					
135 °C; V _R ; 0.75 · I _{AC,R}	> 1000 h for d = 10	-	I _{leak}	\leq initial specified limit					
	> 3000 h for d \ge 12	2.5 mm							
Voltage endurance test				t requirements:					
125 °C, V _R	3500 h for d = 10 r		$ \Delta C/C $						
	7000 h for d \ge 12.8	5 mm	tan δ	\leq 2 times initial specified limit					
			I _{leak}	≤ initial specified limit					
Vibration resistance test	To IEC 60068-2-6	, test Fc:							
			•	lacement amplitude max. 1.5 mm,					
	acceleration max.	0							
		amped by	the alum	inum case using EPCOS					
	standard fixture.								
IEC climatic category	To IEC 60068-1: 5	5/125/56	(−55 °C/+	-125 °C/56 days damp heat test)					
Sectional specification	IEC 60384-4								
Reference standard	AEC-Q200 ²⁾								

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

2) Refer to chapter "General technical information, 2.3 AEC-Q200 standard" for further details.



Dimensional drawing

With stand-off rubber seal

Diameters (mm): 10, 12.5, 16, 18

Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	25 +2.0	7.5	0.80 ±0.05	7.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
16	35.5 +2.0	7.5	0.80 ±0.05	9.2
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.5	7.5	0.80 ±0.1	16.0

B41896

Overview of available types

Other voltage and capacitance ratings are available upon request.

V _R (V DC)	25	35	50
	Case dimensions d	×I (mm)	
C _R (μF)			
180			10 × 20
220			10 × 20
270		10 × 20	12.5×20
330		10 × 20	12.5×20
390		12.5 × 20	12.5 × 25
470	10 × 20	12.5 × 20	12.5 × 25
			16 × 20
560	10 × 20	12.5×25	16 × 20
680	10 × 20	12.5×25	16 × 25
			18 × 20
820	12.5×20	16 × 20	16 × 31.5
1000	12.5×25	16 × 25	16 × 31.5
	16 × 20	18 × 20	
1200	12.5×25	16 × 25	18 × 31.5
		18 × 20	
1500	16 × 20	16 × 31.5	18 × 35
		18 × 25	
1800	16 × 25	16 × 31.5	18 × 40
	18 × 20		
2000		16 × 35.5	
		18 × 31.5	
2200	16 × 31.5	18 × 35	
	18 × 25		
2700	16 × 31.5	18 × 40	
3300	16 × 35.5		
	18 × 31.5		
3900	18 × 35		
4700	18 × 40		

Up to 135 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
$V_{R} = 25 V$	DC					·
470	10 × 20	0.592	0.074	0.062	1205	B41896C5477M***
560	10 ×20	0.592	0.074	0.062	1205	B41896C5567M***
680	10 ×20	0.592	0.074	0.062	1205	B41896C5687M***
820	12.5×20	0.484	0.061	0.055	1820	B41896C5827M***
1000	12.5×25	0.285	0.041	0.038	2280	B41896C5108M***
1000	16 × 20	0.299	0.037	0.034	2280	B41896D5108M***
1200	12.5×25	0.285	0.041	0.038	2280	B41896C5128M***
1500	16 × 20	0.299	0.037	0.034	2280	B41896C5158M***
1800	16 × 25	0.238	0.030	0.026	2860	B41896D5188M***
1800	18 × 20	0.273	0.034	0.031	2490	B41896E5188M***
2200	16 × 31.5	0.185	0.023	0.022	3160	B41896C5228M***
2200	18 × 25	0.229	0.029	0.025	3010	B41896D5228M***
2700	16 × 31.5	0.185	0.023	0.022	3160	B41896C5278M***
3300	16 × 35.5	0.180	0.022	0.020	3467	B41896D5338M***
3300	18 × 31.5	0.178	0.022	0.021	3500	B41896C5338M***
3900	18 × 35	0.178	0.022	0.019	3840	B41896C5398M***
4700	18 × 40	0.150	0.019	0.016	4230	B41896C5478M***

Composition of ordering code

*** = Version

000 = for standard leads, bulk

- 001 = for kinked leads, bulk
- 002 = for cut leads, bulk
- 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
- 004 = for J leads, blister (for \emptyset 10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for \emptyset 10 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code				
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see				
20 °C	d×l	−40 °C	20 °C	20 °C	125 °C	below)				
μF	mm	Ω	Ω	Ω	mA					
$V_{\rm B} = 35 \text{ V DC}$										
270	10 × 20	0.592	0.074	0.062	1205	B41896C7277M***				
330	10 × 20	0.592	0.074	0.062	1205	B41896C7337M***				
390	12.5×20	0.484	0.061	0.055	1820	B41896C7397M***				
470	12.5×20	0.484	0.061	0.055	1820	B41896C7477M***				
560	12.5×25	0.285	0.041	0.038	2280	B41896C7567M***				
680	12.5×25	0.285	0.041	0.038	2280	B41896C7687M***				
820	16 × 20	0.299	0.037	0.034	2280	B41896C7827M***				
1000	16 × 25	0.238	0.030	0.026	2860	B41896D7108M***				
1000	18 ×20	0.273	0.034	0.031	2490	B41896E7108M***				
1200	16 × 25	0.238	0.030	0.026	2860	B41896C7128M***				
1200	18 ×20	0.273	0.034	0.031	2490	B41896D7128M***				
1500	16 × 31.5	0.185	0.023	0.022	3160	B41896C7158M***				
1500	18 × 25	0.232	0.029	0.025	3010	B41896D7158M***				
1800	16 × 31.5	0.185	0.023	0.022	3160	B41896C7188M***				
2000	16 × 35.5	0.180	0.022	0.020	3467	B41896C7208M***				
2000	18 × 31.5	0.176	0.022	0.021	3500	B41896D7208M***				
2200	18 × 35	0.178	0.022	0.019	3840	B41896C7228M***				
2700	18 × 40	0.150	0.019	0.016	4230	B41896C7278M***				

Composition of ordering code

*** = Version

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk
- 002 = for cut leads, bulk
- 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
- 004 = for J leads, blister (for \emptyset 10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for \emptyset 10 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Up to 135 °C

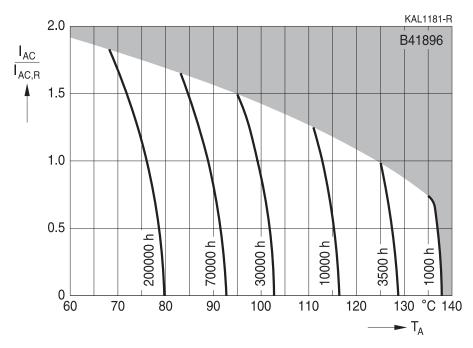
Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d × I	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
V _R = 50 V D	C					
180	10 × 20	0.592	0.074	0.062	1205	B41896C6187M***
220	10 ×20	0.592	0.074	0.062	1205	B41896C6227M***
270	12.5×20	0.484	0.061	0.055	1820	B41896C6277M***
330	12.5 × 20	0.484	0.061	0.055	1820	B41896C6337M***
390	12.5×25	0.352	0.044	0.041	2280	B41896D6397M***
470	12.5×25	0.352	0.044	0.041	2280	B41896E6477M***
470	16 ×20	0.299	0.037	0.034	2280	B41896D6477M***
560	16 ×20	0.299	0.037	0.034	2280	B41896C6567M***
680	16 × 25	0.238	0.030	0.026	2860	B41896C6687M***
680	18 ×20	0.273	0.034	0.031	2490	B41896D6687M***
820	16 × 31.5	0.185	0.023	0.022	3160	B41896C6827M***
1000	16 × 31.5	0.185	0.023	0.022	3160	B41896C6108M***
1200	18 × 31.5	0.178	0.022	0.021	3500	B41896C6128M***
1500	18 × 35	0.178	0.022	0.019	3840	B41896C6158M***
1800	18 × 40	0.150	0.019	0.016	4230	B41896C6188M***

Composition of ordering code

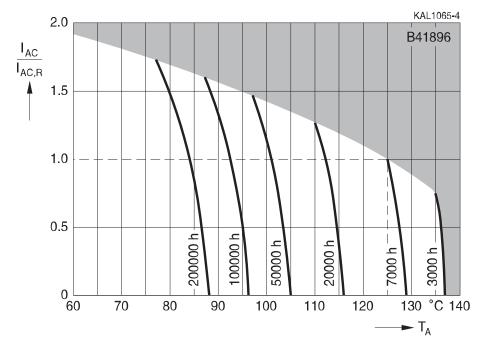
*** = Version

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk
- 002 = for cut leads, bulk
- 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
- 004 = for J leads, blister (for \emptyset 10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for \oslash 10 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)


012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Useful life¹⁾

depending on ambient temperature T_A under ripple current operating conditions


d = 10 mm

Useful life¹⁾

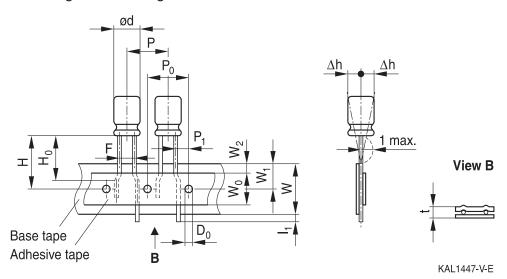
depending on ambient temperature T_A under ripple current operating conditions

 $d \geq 12.5 \text{ mm}$

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

Frequency factor of permissible ripple current I_{AC} versus frequency f

Taping


Single-ended capacitors are available taped in Ammo pack from diameter 8 to 18 mm as follows:

Lead spacing F = 3.5 mm (\emptyset d = 8 mm) Lead spacing F = 5.0 mm (\emptyset d = 8 ... 12.5 mm) Lead spacing F = 7.5 mm (\emptyset d = 16 ... 18 mm).

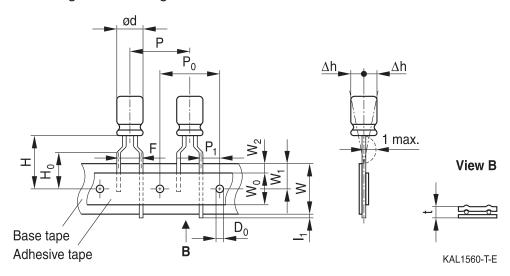
The dimensions for F, P_1 and 1 max. are specified with reference to the center of the terminal wires.

Lead spacing 3.5 mm (\emptyset d = 8 mm)

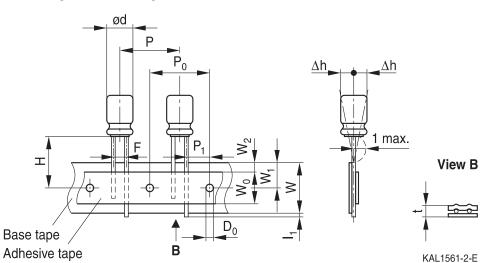
Last 3 digits of ordering code: 006

Dimensions in mm

\emptyset d	F	Н	W	W _o	W_1	W ₂	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8	3.5	18.5	18.0	9.5	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8	±1 0	±0 5	min	±0 5	mov	±1 0	±0.2	+0 e	mov	±0.0	mov	+0.2
ance	-0.2	±1.0	±0.5		±0.5	max.	±1.0	±0.5	±0.0	max.	±0.2	max.	10.2


Leads can also run straight through the taping area.

B41896 Up to 135 °C

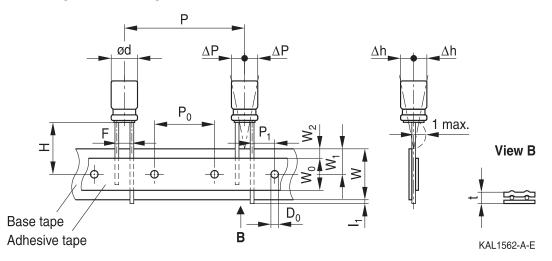

Lead spacing 5.0 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 008

Lead spacing 5.0 mm (\emptyset d = 10 ... 12.5 mm)

Last 3 digits of ordering code: 008

Dimensions in mm


Ød	F	Н	W	W_0	W_1	W_2	H _o	Р	P ₀	P ₁	l ₁	t	Δh	D ₀
8		20.0		9.5			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	9.5	9.0	1.5	_	12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		11.5			_	15.0	15.0	5.0				
Toler- ance	+0.8 -0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 -0.2	max.	±0.2

Taping is available up to dimensions $d \times I = 12.5 \times 25$ mm.

	TDK
	Ø
B41896	
Up to 135 °C	Ĭ
	.

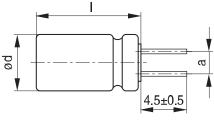
Lead spacing 7.5 mm (\emptyset d = 16 ...18 mm)

Last 3 digits of ordering code: 009

Dimensions in mm

\varnothing d	F	Н	W	W _o	W_1	W ₂	Р	P ₀	P ₁	I ₁	t	ΔP	Δh	D ₀
16	7.5	105	18.0	12.5	0 0	15	20.0	15.0	3.75	10	0.7	0	0	4.0
18	7.5	10.0	10.0	12.5	9.0	1.5	30.0	15.0	3.75	1.0	0.7	0	0	4.0
Toler-	±0.8	-0.5	+0 5	min.	+0.5	max.	+1 0	+0.2	+0 5	may	+0.2	+1 0	+1 0	+0.2
ance	-0.0	-0.5 +0.75	±0.5		±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	±1.0	±1.0	±0.2

Taping is available up to dimensions $d \times I = 16 \times 31.5$ mm and 18×31.5 mm.


Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads


Last 3 digits of ordering code: 002

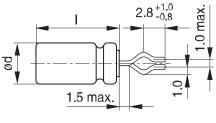
With stand-off rubber seal

KAL1085-I

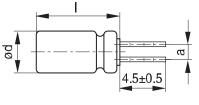
With flat rubber seal

KAL1086-R

Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10 × 20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16 × 20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
16 × 40	7.5
18×20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5

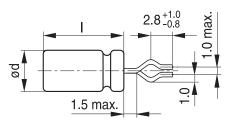


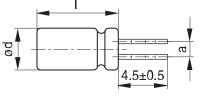
B41896 Up to 135 °C


Kinked leads

Last 3 digits of ordering code: 001

With stand-off rubber seal





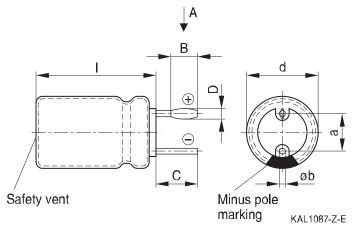
KAL1083-2

With flat rubber seal

KAL1082-T

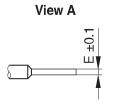
KAL1084-A

Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10 × 20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16 × 20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
18 × 20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5


PAPR leads (Protection Against Polarity Reversal)

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm. There are three configurations available: Crimped leads, J leads, bent 90° leads.

Crimped leads


Last 3 digits of ordering code: 003

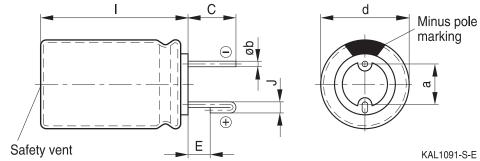
With stand-off rubber seal

The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire ø0.8 mm Æ ₼ ø1.0 ø1.5 а

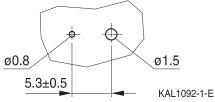
Case sizeDimense $d \times I (mm)$ $B \pm 0.2$ 16×20 1.5	ions (mm) C ±0.5 3.0 3.0	D ±0.1	E ±0.1 0.3	a ±0.5 7.5	Øb
	3.0	1.3			
16×20 1.5			0.3	7.5	
	3.0	10			0.8 ±0.05
16×25 1.5		1.3	0.3	7.5	0.8 ±0.05
16 × 31.5 1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 × 35.5 1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
18×20 1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×25 1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 × 31.5 1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 × 35 1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 × 40 1.5	3.0	1.3	0.3	7.5	0.8 ±0.1


KAL1089-G-E

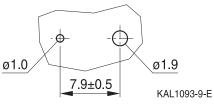
B41896

J leads

Last 3 digits of ordering code: 004



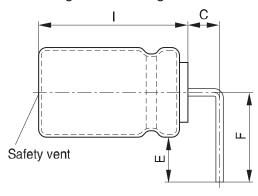
The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

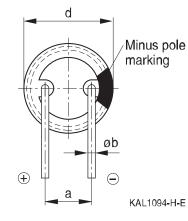

KAL1091-S-E

Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire ø0.6 mm

Suggestion for PCB hole diameter, wire ø0.8 mm


Case size	Dimensions (mm)				
$d \times I$ (mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb
10 × 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05
10×16	3.2	0.7	1.2	5.0	0.6 ±0.05
10×20	3.2	0.7	1.2	5.0	0.6 ±0.05
12.5 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05
12.5 × 25	3.2	0.7	1.2	5.0	0.6 ±0.05
16 × 20	3.5	0.7	1.6	7.5	0.8 ±0.05
16 × 25	3.5	0.7	1.6	7.5	0.8 ±0.05
16 × 31.5	3.5	0.7	1.6	7.5	0.8 ±0.05
16 imes 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05
16 × 40	3.5	0.7	1.6	7.5	0.8 ±0.05
18×20	3.5	0.7	1.6	7.5	0.8 ±0.1
18×25	3.5	0.7	1.6	7.5	0.8 ±0.1
18×31.5	3.5	0.7	1.6	7.5	0.8 ±0.1
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1



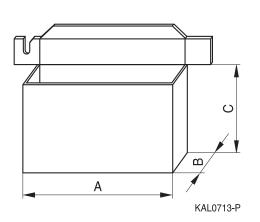
B41896 Up to 135 °C

Bent 90° leads for horizontal mounting pinning

Last 3 digits of ordering code: 012

The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

Case size	Dimensions (mm)				
$d \times I$ (mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb
16×20	4.0	4.0	12.0	7.5	0.8 ±0.05
16×25	4.0	4.0	12.0	7.5	0.8 ±0.05
16 × 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05
16 imes 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05
16×40	4.0	4.0	13.0	7.5	0.8 ±0.05
18×20	4.0	4.0	13.0	7.5	0.8 ±0.1
18×25	4.0	4.0	13.0	7.5	0.8 ±0.1
18×31.5	4.0	4.0	13.0	7.5	0.8 ±0.1
18×35	4.0	4.0	13.0	7.5	0.8 ±0.1
18×40	4.0	4.0	13.0	7.5	0.8 ±0.1


Bent leads for diameter 12.5 mm available upon request.

B41896

Packing units and box dimensions

Ammo pack

Case size $d \times I$	Dimensions (mm)			Packing units
mm	A _{max}	B _{max}	C _{max}	pcs.
8×11.5	345	60	240	1000
10 × 12.5	345	60	280	750
10×16	345	65	200	500
10×20	345	65	200	500
12.5 imes 20	345	65	260	500
12.5×25	345	70	260	500
16×20	325	65	285	300
16 × 25	325	65	285	300
16 imes 31.5	325	80	275	300
18×20	325	65	285	250
18×25	325	65	285	250
18×31.5	325	80	275	250

Up to 135 °C

Overview of packing units and code numbers

								PAPR	
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
$d \times I$	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.
8×11.5	1000	1000			-	_	_	_	
10×12.5	1000	750			-	1000	_	900	
10 × 16	1000	500			-	1000	—	675	
10×20	500	500			500	500	-	500	
12.5 × 20	350	500			350	350	_	300	1)
12.5 × 25	250	500			500	500	_	225	1)
16×20	250	300	300			200	200	200	420
16×25	250	300	300			200	216	216	216
16×31.5	200	300			250	250	180	180	180
16 imes 35.5	100	_			100	100	150	150	150
16×40	125	_		100	100	72	72	72	
18×20	175	250		175	175	200	200	420	
18×25	150	250	250		150	150	200	200	200
18×31.5	100	250			100	100	150	150	150
18×35	100	-			100	100	150	150	150
18×40	125	_			100	100	72	_	72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8	1				
complete		008	5	812.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

B41896

Cautions and warnings

Personal safety

The electrolytes used have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC). Furthermore, some of the high-voltage electrolytes used are self-extinguishing.

As far as possible, we do not use any dangerous chemicals or compounds to produce operating electrolytes, although in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. We do, however, restrict the amount of dangerous materials used in our products to an absolute minimum.

Materials and chemicals used in our aluminum electrolytic capacitors are continuously adapted in compliance with the TDK Electronics Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on our website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Up to 135 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of seperate file chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw- terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"

B41896

≥	P
1	T

Topic	Safety information	Reference
		chapter "General
		technical information"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
Maintenance	Make periodic inspections of the capacitors.	10
	Before the inspection, make sure that the power	"Maintenance"
	supply is turned off and carefully discharge the	
	capacitors.	
	Do not apply excessive mechanical stress to the	
	capacitor terminals when mounting.	
Storage	Do not store capacitors at high temperatures or	7.3
	high humidity. Capacitors should be stored at	"Shelf life and storage
	+5 to +35 °C and a relative humidity of \leq 75%.	conditions"
		Reference
		chapter "Capacitors with
		screw terminals"
Design of the second se		
Breakdown strength		"Screw terminals –
of insulating	when ring clips are used for mounting.	accessories"
sleeves		

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under

www.tdk-electronics.tdk.com/orderingcodes.

Up to 135 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C _R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C _f	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d _{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR_{f}	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
I	Current	Strom
I _{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,RMS}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
I _{AC,f}	Ripple current at frequency f	Wechselstrom bei Frequenz f
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
I _{AC,R}	Rated ripple current	Nennwechselstrom
l _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R _{ins}	Insulation resistance	Isolationswiderstand
R _{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T _A	Ambient temperature	Umgebungstemperatur
T _c	Case temperature	Gehäusetemperatur
Τ _B	Capacitor base temperature	Temperatur des Gehäusebodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
Xc	Capacitive reactance	Kapazitiver Blindwiderstand
X_{L}	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z _T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan δ	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ε ₀	Absolute permittivity	Elektrische Feldkonstante
ε _r	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.

Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10